Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
3.
Cell Death Differ ; 31(4): 431-446, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418695

RESUMO

Ferroptosis, a regulated form of cell death triggered by iron-dependent lipid peroxidation, has emerged as a promising therapeutic strategy for cancer treatment, particularly in hepatocellular carcinoma (HCC). However, the mechanisms underlying the regulation of ferroptosis in HCC remain to be unclear. In this study, we have identified a novel regulatory pathway of ferroptosis involving the inhibition of Apurinic/apyrimidinic endonuclease 1 (APE1), a key enzyme with dual functions in DNA repair and redox regulation. Our findings demonstrate that inhibition of APE1 leads to the accumulation of lipid peroxidation and enhances ferroptosis in HCC. At the molecular level, the inhibition of APE1 enhances ferroptosis which relies on the redox activity of APE1 through the regulation of the NRF2/SLC7A11/GPX4 axis. We have identified that both genetic and chemical inhibition of APE1 increases AKT oxidation, resulting in an impairment of AKT phosphorylation and activation, which leads to the dephosphorylation and activation of GSK3ß, facilitating the subsequent ubiquitin-proteasome-dependent degradation of NRF2. Consequently, the downregulation of NRF2 suppresses SLC7A11 and GPX4 expression, triggering ferroptosis in HCC cells and providing a potential therapeutic approach for ferroptosis-based therapy in HCC. Overall, our study uncovers a novel role and mechanism of APE1 in the regulation of ferroptosis and highlights the potential of targeting APE1 as a promising therapeutic strategy for HCC and other cancers.


Assuntos
Carcinoma Hepatocelular , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Ferroptose , Neoplasias Hepáticas , Humanos , Ferroptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Linhagem Celular Tumoral , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/antagonistas & inibidores , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Camundongos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/antagonistas & inibidores , Sistema y+ de Transporte de Aminoácidos/genética , Camundongos Nus , Peroxidação de Lipídeos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores
4.
J Immunol ; 212(5): 755-763, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377476

RESUMO

TNF-α-induced protein 8-like 2 (TIPE2 or TNFAIP8L2) is a recently discovered negative regulator of innate and adaptive immunity. TIPE2 is expressed in a wide range of tissues, both immune and nonimmune, and is implicated in the maintenance of immune homeostasis within the immune system. Furthermore, TIPE2 has been shown to play a pivotal role in the regulation of inflammation and the development of tumor. This review focuses on the structural characteristics, expression patterns, and functional roles of TIPE proteins, with a particular emphasis on the role and underlying mechanisms of TIPE2 in immune regulation and its involvement in different diseases. However, the current body of evidence is still limited in providing a comprehensive understanding of the complex role of TIPE2 in the human body, warranting further investigation to elucidate the possible mechanisms and functions of TIPE2 in diverse disease contexts.


Assuntos
Inflamação , Peptídeos e Proteínas de Sinalização Intracelular , Humanos , Imunidade Adaptativa , Sistema Imunitário
5.
Arch Toxicol ; 98(3): 709-734, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38182913

RESUMO

With the rapid development of new generations of antitumor therapies, the average survival time of cancer patients is expected to be continuously prolonged. However, these therapies often lead to cardiotoxicity, resulting in a growing number of tumor survivors with cardiovascular disease. Therefore, a new interdisciplinary subspecialty called "cardio-oncology" has emerged, aiming to detect and treat cardiovascular diseases associated with tumors and antitumor therapies. Recent studies have highlighted the role of ferroptosis in both cardiovascular and neoplastic diseases. The balance between intracellular oxidative stress and antioxidant defense is crucial in regulating ferroptosis. Tumor cells can evade ferroptosis by upregulating multiple antioxidant defense pathways, while many antitumor therapies rely on downregulating antioxidant defense and promoting ferroptosis in cancer cells. Unfortunately, these ferroptosis-inducing antitumor therapies often lack tissue specificity and can also cause injury to the heart, resulting in ferroptosis-induced cardiotoxicity. A range of cardioprotective agents exert cardioprotective effects by inhibiting ferroptosis. However, these cardioprotective agents might diminish the efficacy of antitumor treatment due to their antiferroptotic effects. Most current research on ferroptosis only focuses on either tumor treatment or heart protection but rarely considers both in concert. Therefore, further research is needed to study how to protect the heart during antitumor therapies by regulating ferroptosis. In this review, we summarized the role of ferroptosis in the treatment of neoplastic diseases and cardiovascular diseases and also attempted to propose further research directions for ferroptosis in the field of cardio-oncology.


Assuntos
Doenças Cardiovasculares , Ferroptose , Humanos , Antioxidantes , Cardio-Oncologia , Cardiotônicos , Cardiotoxicidade , Doenças Cardiovasculares/induzido quimicamente
6.
Transl Res ; 268: 13-27, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38286358

RESUMO

Inflammation is a crucial pathophysiological mechanism in atherosclerosis (AS). This study aims to investigate the impact of sulfotransferase family 2b member 1 (SULT2B1) on the inflammatory response of macrophages and the progression of AS. Here, we reported that SULT2B1 expression increased with the progression of AS. In AS model mice, knockdown of Sult2b1 led to remission of AS and reduced inflammation levels. Further exploration of the downstream molecular mechanisms of SULT2B1 revealed that suppressing Sult2b1 in macrophages resulted in decreased levels of 25HC3S in the nucleus, elevated expression of Lxr, and increased the transcription of Lncgga3-204. In vivo, knockdown of Lncgga3-204 aggravated the inflammatory response and AS progression, while the simultaneous knockdown of both Sult2b1 and Lncgga3-204 exacerbated AS and the inflammatory response compared with knockdown of Sult2b1 alone. Increased binding of Lncgga3-204 to SMAD4 in response to oxidized-low density lipoprotein (ox-LDL) stimulation facilitated SMAD4 entry into the nucleus and regulated Smad7 transcription, which elevated SMAD7 expression, suppressed NF-κB entry into the nucleus, and ultimately attenuated the macrophage inflammatory response. Finally, we identified the presence of a single nucleotide polymorphism (SNP), rs2665580, in the SULT2B1 promoter region in monocytes from coronary artery disease (CAD) patients. The predominant GG/AG/AA genotypes were observed in the Asian population. Elevated SULT2B1 expression in monocytes with GG corresponded to elevated inflammatory factor levels and more unstable coronary plaques. To summarize, our study demonstrated that the critical role of SULT2B1/Lncgga3-204/SMAD4/NF-κB in AS progression. SULT2B1 serves as a novel biomarker indicating inflammatory status, thereby offering insights into potential therapeutic strategies for AS.


Assuntos
Aterosclerose , Progressão da Doença , Inflamação , Macrófagos , Proteína Smad4 , Sulfotransferases , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Sulfotransferases/genética , Sulfotransferases/metabolismo , Animais , Camundongos , Macrófagos/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Proteína Smad4/metabolismo , Proteína Smad4/genética , Masculino , Camundongos Endogâmicos C57BL , Feminino
7.
Sci Rep ; 14(1): 1237, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216708

RESUMO

The great saphenous vein is the most commonly used vessel for coronary artery bypass grafting (CABG), but its use has been associated with a high restenosis rate at 10-year follow-up. This study sought to determine the key genes associated with vein graft restenosis that could serve as novel therapeutic targets. A total of 3075 upregulated and 1404 downregulated genes were identified after transcriptome sequencing of three pairs of restenosed vein grafts and intraoperative spare great saphenous veins. Weighted gene co-expression network analysis showed that the floralwhite module had the highest correlation with vein graft restenosis. The intersection of the floralwhite module gene set and the upregulated gene set contained 615 upregulated genes strongly correlated with vein graft restenosis. Protein-protein interaction network analysis identified six hub genes (ITGAM, PTPRC, TLR4, TYROBP, ITGB2 and CD4), which were obtained using the STRING database and CytoHubba. Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses showed that the common hub genes were mainly involved in the composition of the cell membrane; in biological processes such as neutrophil degranulation, receptor binding and intercellular adhesion, innate immune deficiency; and other signaling pathways. Finally, ITGB2 was selected as the target gene, and its expression was verified in tissues. The results showed that ITGB2 was significantly overexpressed in occluded vein grafts. To study the function of ITGB2 in HVSMCs, primary HVSMCs were cultured and successfully identified. EdU incorporation, wound healing and transwell assays showed that ITGB2 silencing significantly inhibited the proliferation and migration of HVSMCs stimulated by PDGF-BB. Overall, our study provides a basis for future studies on preventing restenosis following CABG.


Assuntos
Ponte de Artéria Coronária , Perfilação da Expressão Gênica , Perfilação da Expressão Gênica/métodos , Veia Safena , Becaplermina , Proliferação de Células/genética
9.
Environ Pollut ; 343: 123239, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154782

RESUMO

A total of 84 PM2.5 (fine particulate matter) aerosol samples were collected between October 2020 and August 2021 within an urban site in Hangzhou, an East China megacity. Chemical species, such as organic carbon (OC), elemental carbon (EC), as well as char, soot, and n-alkanes, were analyzed to determine their pollution characteristics and source contributions. The mean yearly concentrations of OC, EC, char, soot, and total n-alkanes (∑n-alkane) were 8.76 ± 3.61 µg/m3, 1.44 ± 0.76 µg/m3, 1.21 ± 0.69 µg/m3, 0.3 ± 0.1 µg/m3, and 24.2 ± 10.6 ng/m3. The OC, EC, and ∑n-alkanes were found in the highest levels during winter and lowest during summer. There were strong correlations between OC and EC in both winter and spring, suggesting similar potential sources for these carbonaceous components in both seasons. There were poor correlations among the target pollutants due to summertime secondary organic carbon formation. Potential source contribution functions analysis showed that local pollution levels in winter and autumn were likely influenced by long-range transportation from the Plain of North China. Source index and positive matrix factorization models provided insights into the complex sources of n-alkanes in Hangzhou. Their major contributors were identified as terrestrial plant releases (32.7%), traffic emissions (28.8%), coal combustion (27.3%), and microbial activity (11.2%). Thus, controlling vehicular emissions and coal burning could be key measures to alleviate n-alkane concentrations in the atmosphere of Hangzhou, as well as other Chinese urban centers.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Fuligem/análise , Monitoramento Ambiental , Material Particulado/análise , Emissões de Veículos/análise , China , Carvão Mineral/análise , Alcanos/análise , Aerossóis/análise , Carbono/análise , Estações do Ano
10.
Biol Res ; 56(1): 62, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041171

RESUMO

BACKGROUND: Atherosclerosis (AS), a significant contributor to cardiovascular disease (CVD), is steadily rising with the aging of the global population. Pyroptosis and apoptosis, both caspase-mediated cell death mechanisms, play an essential role in the occurrence and progression of AS. The human pineal gland primarily produces melatonin (MT), an indoleamine hormone with powerful anti-oxidative, anti-pyroptotic, and anti-apoptotic properties. This study examined MT's anti-oxidative stress and anti-pyroptotic effects on human THP-1 macrophages treated with nicotine. METHODS: In vitro, THP-1 macrophages were induced by 1 µM nicotine to form a pyroptosis model and performed 30 mM MT for treatment. In vivo, ApoE-/- mice were administered 0.1 mg/mL nicotine solution as drinking water, and 1 mg/mL MT solution was intragastric administrated at 10 mg/kg/day. The changes in pyroptosis, apoptosis, and oxidative stress were detected. RESULTS: MT downregulated pyroptosis, whose changes were paralleled by a reduction in reactive oxygen species (ROS) production, reversal of sirtuin3 (SIRT3), and Forkhead box O3 (FOXO3α) upregulation. MT also inhibited apoptosis, mainly caused by the interaction of caspase-1 and caspase-3 proteins. Vivo studies confirmed that nicotine could accelerate plaque formation. Moreover, mice treated with MT showed a reduction in AS lesion area. CONCLUSIONS: MT alleviates pyroptosis by regulating the SIRT3/FOXO3α/ROS axis and interacting with apoptosis. Importantly, our understanding of the inhibitory pathways for macrophage pyroptosis will allow us to identify other novel therapeutic targets that will help treat, prevent, and reduce AS-associated mortality.


Assuntos
Aterosclerose , Melatonina , Sirtuína 3 , Camundongos , Humanos , Animais , Melatonina/farmacologia , Piroptose , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 3/metabolismo , Sirtuína 3/farmacologia , Nicotina/farmacologia , Apoptose , Aterosclerose/tratamento farmacológico , Caspases/farmacologia
11.
Biomedicines ; 11(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38137380

RESUMO

Immunotherapy is a hot area in cancer treatment, and one of the keys to this therapy is the identification of the right tumour-associated or tumour-specific antigen. Cluster of differentiation 24 (CD24) is an emerging tumour-associated antigen that is commonly and highly expressed in various tumours. In addition, CD24 is associated with several cancer-related signalling pathways and closely interacts with other molecules and immune cells to influence tumour progression. Monoclonal antibodies, antibody-drug conjugates (ADCs), chimeric antigen receptor (CAR) T-cell therapy, and CAR-NK cell therapy are currently available for the treatment of CD24. In this review, we summarise the existing therapeutic approaches and possible future directions targeting CD24.

12.
Cell Host Microbe ; 31(11): 1930-1943.e4, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37944495

RESUMO

The effect of gut bacteria on the response to immune checkpoint inhibitors (ICIs) has been studied, but the relationship between fungi and ICI responses is not fully understood. Herein, 862 fecal metagenomes from 9 different cohorts were integrated for the identification of differentially abundant fungi and subsequent construction of random forest (RF) models to predict ICI responses. Fungal markers demonstrate excellent performance, with an average area under the curve (AUC) of 0.87. Their performance improves even further, reaching an average AUC of 0.89 when combined with bacterial markers. Higher enrichment of exhausted T cells is detected in responders, as predicted by fungal markers. Multi-kingdom network and functional analysis reveal that the fungus Schizosaccharomyces octosporus may ferment starch into short-chain fatty acids in responders. This study provides a fungal profile of the ICI response and the identification of multi-kingdom microbial markers with good performance that may improve the overall applicability of ICI therapy.


Assuntos
Microbioma Gastrointestinal , Neoplasias , Humanos , Metagenoma , Imunoterapia , Bactérias/genética , Neoplasias/terapia
13.
Medicine (Baltimore) ; 102(47): e35913, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38013355

RESUMO

The purpose of this study was to construct a competitive endogenous RNA (ceRNA) network related to long non-coding RNA (lncRNAs) via the bioinformatics analysis, reveal the pathogenesis of coronary heart disease (CAD) and develop new biomarkers for CAD. The gene expression datasets of peripheral blood of CAD were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed mRNAs, miRNAs and lncRNAs (DEmRNAs, DEmiRNAs and DElncRNAs) were identified. Subsequently, a ceRNA network involving lncRNAs, miRNAs, and mRNAs was built. Moreover, DElncRNAs in the cytoplasm were screened and a DElncRNA-associated ceRNA network was established. In total, 1860 DEmRNAs, 393 DElncRNAs and 20 DEmiRNAs were filtrated in patients with CAD compared with normal controls. Functional analysis suggested that DEmRNAs significantly enriched in CAD-related pathways, such as PI3K-Akt signaling pathways and MAPK signaling pathway. The ceRNA network contained 12 DEmiRNAs, 30 DElncRNAs and 537 DEmRNAs. Afterwards, the cytoplasm ceRNA network was consisted of 537 DEmRNAs, 12 DEmiRNAs and 12 DElncRNAs. Such as, up-regulated LncRNA-HOX transcript antisense RNA (HOTAIR) was interacted with down-regulated has-miR-326 and has-miR-1. The successful construction of lncRNA-associated ceRNA network is helpful to better clarify the pathogenesis of CAD and provide potential peripheral blood biomarkers for CAD.


Assuntos
Doença da Artéria Coronariana , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Doença da Artéria Coronariana/genética , Fosfatidilinositol 3-Quinases/metabolismo , Redes Reguladoras de Genes , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Front Oncol ; 13: 1257404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588092

RESUMO

[This corrects the article DOI: 10.3389/fonc.2022.993243.].

16.
Immunology ; 170(3): 388-400, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37501391

RESUMO

It is well known that chimeric antigen receptor T-cell immunotherapy (CAR-T-cell immunotherapy) has excellent therapeutic effect in haematological tumours, but it still faces great challenges in solid tumours, including inefficient T-cell tumour infiltration and poor functional persistence. Flap structure-specific endonuclease 1 (FEN1), highly expressed in a variety of cancer cells, plays an important role in both DNA replication and repair. Previous studies have reported that FEN1 inhibition is an effective strategy for cancer treatment. Therefore, we hypothesized whether FEN1 inhibitors combined with CAR-T-cell immunotherapy would have a stronger killing effect on solid tumours. The results showed that low dose of FEN1 inhibitors SC13 could induce an increase of double-stranded broken DNA (dsDNA) in the cytoplasm. Cytosolic dsDNA can activate the cyclic GMP-AMP synthase-stimulator of interferon gene signalling pathway and increase the secretion of chemokines. In vivo, under the action of FEN1 inhibitor SC13, more chemokines were produced at solid tumour sites, which promoted the infiltration of CAR-T cells and improved anti-tumour immunity. These findings suggest that FEN1 inhibitors could enable CAR-T cells to overcome poor T-cell infiltration and improve the treatment of solid tumours.


Assuntos
Neoplasias , Humanos , Transdução de Sinais , DNA , Linfócitos T/metabolismo , Nucleotidiltransferases/genética , Quimiocinas , Endonucleases Flap/genética , Endonucleases Flap/metabolismo
17.
Int J Oncol ; 63(3)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37503727

RESUMO

Subsequently to the publication of the above article, the authors alerted us to the fact that the data shown in Fig. 8I (for the 'Sh­CN / 0' panel) on p. 11 were mistakenly selected from those data belonging to the experiments shown in Fig. 7H (the 'Sh­CN / 0' panel) of this paper during the final assembly of the figures for review. Note that this error did not affect the conclusions reported in this paper, as both Fig. 7H ('Sh­CN / 0') and Fig. 8I ('Sh­CN / 0') show negative controls of the Comet assay, with no obvious trailing. The revised version of Fig. 8, showing the correct data for the 'Sh­CN / 0' panel in Fig. 8I, is shown on the next page. The authors are grateful to the Editor of International Journal of Oncology for allowing them this opportunity to publish a Corrigendum, and all the authors agree with its publication. Furthermore, the authors apologize to the readership for any inconvenience caused. [International Journal of Oncology 61: 106, 2022; DOI: 10.3892/ijo.2022.5396].

18.
Med Oncol ; 40(8): 242, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37452976

RESUMO

Prostate cancer (PCa) refers to epithelial malignancies occurring in prostate and is the most commonly diagnosed cancer among men. Flap structure-specific endonuclease 1 (FEN1) is one of the major base excise repair enzymes and is abnormally expressed in a variety of cancers, which contributes to cancer progression. Targeting FEN1 serves as a potent strategy for cancer therapy. However, how FEN1 acts on PCa cell proliferation and its role in chemotherapeutic response remain largely unknown. In this study, we show that knockdown of FEN1 by CRISPR/Cas9 system impedes the proliferation and migration of PCa cells. FEN1 Inhibitor SC13 induced DNA damage accumulation and further resulted in apoptosis of PCa cells. Furthermore, genetic knockdown of FEN1 or inhibition of FEN1 by SC13 promoted DNA damage and enhanced docetaxel (DTX)-induced chemotherapeutic response in PCa cells. Collectively, these findings demonstrate the importance of FEN1 in PCa cell proliferation and implicate FEN1 as a promising target for monotherapy or combination therapeutic strategy in PCa treatment.


Assuntos
Antineoplásicos , Neoplasias da Próstata , Masculino , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Próstata , Linhagem Celular Tumoral , Dano ao DNA , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Endonucleases Flap/genética
19.
Pharm Biol ; 61(1): 886-896, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37288723

RESUMO

CONTEXT: Metformin (Met) has a protective effect against cardiac ischemia and reperfusion (I/R) injury. OBJECTIVE: This study uncovered the Met effect on ferroptosis in cardiac I/R. MATERIALS AND METHODS: Sprague-Dawley rats underwent cardiac I/R treatment (ischaemia 30 min; reperfusion 24 h) (I/R group), and administered intravenously with Met (200 mg/kg) (I/R + Met group). Haematoxylin-eosin staining, Prussian blue staining, immunohistochemistry and transmission electron microscope were conducted on cardiac tissues. H9c2 cells underwent oxygen-glucose deprivation/reoxygenation (OGD/R group) and treated by Met (0.1 mM) (OGD/R + Met group). Adenosine monophosphate-activated protein kinase α (AMPKα) siRNA was transfected into OGD/R-induced H9c2 cells. Cell counting kit-8 (CCK-8) assay, dichloro-dihydro-fluorescein diacetate (DCFH-DA) and JC-1 staining were conducted on H9c2 cells. Ferroptosis-related indicators and gene expression were detected by enzyme-linked immunosorbent assay (ELISA), quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. RESULTS: In cardiac I/R rat, Met decreased heart and serum MDA, cardiac and serum non-heme iron, and serum CK-MB and LDH (inhibition rate: 50.0%, 48.8%, 47.6%, 29.5%, 30.6% and 34.7%, respectively), relieved cardiac tissue ferroptosis and mitochondria damage, increased fraction shortening and ejection fraction (157.5% and 146.2% on day 28, respectively), up-regulated AMPKα and down-regulated NOX4 in cardiac tissues. In OGD/R-induced H9c2 cells, Met (0.1 mM) increased cell viability (promotion rate: 170.0%), decreased non-heme iron and MDA (inhibition rate: 30.1% and 47.9%, respectively), relieved ferroptosis, up-regulated AMPKα and down-regulated NOX4. AMPKα silencing abrogated these effects of Met on the OGD/R-induced H9c2 cells. DISCUSSION AND CONCLUSIONS: Met shows effectiveness in relieving ferroptosis in cardiac I/R. In the future, Met may be an effective drug for relieving ferroptosis in cardiac I/R patients clinically.


Assuntos
Ferroptose , Metformina , Isquemia Miocárdica , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Metformina/farmacologia , Linhagem Celular , Apoptose , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Isquemia Miocárdica/metabolismo , Isquemia , Proteínas Quinases Ativadas por AMP/metabolismo , Reperfusão , Ferro/metabolismo , Miócitos Cardíacos
20.
World J Gastrointest Oncol ; 15(5): 787-809, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37275445

RESUMO

BACKGROUND: Circular RNAs (circRNAs) have attracted extensive attention as therapeutic targets in gastric cancer (GC). Circ_0003356 is known to be downregulated in GC tissues, but its cellular function and mechanisms remain undefined. AIM: To investigate the role of circ_0003356 in GC at the molecular and cellular level. METHODS: Circ_0003356, miR-668-3p, and SOCS3 expression were assessed via quantitative real time-polymerase chain reaction (qRT-PCR). Wound healing, EdU, CCK-8, flow cytometry and transwell assays were used to analyze the migration, proliferation, viability, apoptosis and invasion of GC cells. The subcellular localization of circ_0003356 was monitored using fluorescence in situ hybridization. The interaction of circ_0003356 with miR-668-3p was confirmed using RIP-qRT-PCR, RNA pull-down, and dual luciferase reporter assays. We observed protein levels of genes via western blot. We injected AGS cells into the upper back of mice and performed immunohistochemistry staining for examining E-cadherin, N-cadherin, Ki67, and SOCS3 expressions. TUNEL staining was performed for the assessment of apoptosis in mouse tumor tissues. RESULTS: Circ_0003356 and SOCS3 expression was downregulated in GC cells, whilst miR-668-3p was upregulated. Exogenous circ_0003356 expression and miR-668-3p silencing suppressed the migration, viability, proliferation, epithelial to mesenchy-mal transition (EMT) and invasion of GC cells and enhanced apoptosis. Circ_0003356 overexpression impaired tumor growth in xenograft mice. Targeting of miR-668-3p by circ_0003356 was confirmed through binding assays and SOCS3 was identified as a downstream target of miR-668-3p. The impacts of circ_0003356 on cell proliferation, apoptosis, migration, invasion and EMT were reversed by miR-668-3p up-regulation or SOCS3 down-regulation in GC cells. CONCLUSION: Circ_0003356 impaired GC development through its interaction with the miR-668-3p/SOCS3 axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA